



- Insight into the size-resolved markers and eco-health
- 2 significance of microplastics from typical sources in
- 3 northwest China
- 5 Liyan Liu<sup>1</sup>, Hongmei Xu<sup>1\*,2</sup>, Mengyun Yang<sup>1</sup>, Abdullah Akhtar<sup>1</sup>, Jian Sun<sup>1</sup>, Zhenxing Shen<sup>1,2</sup>
- 7 Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049,
- 8 China

6

- 9 <sup>2</sup>SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese
- 10 Academy of Sciences, Xi'an, 710061, China
- 12 \*Corresponding author:
- 13 Hongmei Xu, Department of Environmental Science and Engineering, Xi'an Jiaotong University,
- 14 Xi'an, 710049, China. E-mail: xuhongmei@xjtu.edu.cn.

15

11





Abstract

16

17 Research on atmospheric microplastics (MPs) from typical sources is limited, constraining the 18 targeted management of pollution. Here, the characteristics and source profiles of eight types of 19 common MPs and three classes of plasticizers (phthalates, benzothiazole and its derivatives, 20 bisphenol A) emitted from plastic burning (PB), fruit bag burning (FB), road traffic (RT), agricultural film (AF) and livestock breeding (LB) sources were determined in PM<sub>2.5</sub> and PM<sub>10</sub> in 21 22 the Guanzhong Plain, northern China. PB features high proportions of poly(methyl methacrylate) 23 and 2-hydroxy benzothiazole, with poly(methyl methacrylate) being more abundant in coarse 24 particles (PMcoarse). FB exhibits the higher proportion of di-n-octyl phthalate in PMcoarse than PM2.5. 25 RT shows a distinguishable profile with high abundances of rubber. The abundance of 2-26 benzothiazolyl-N-morpholinosulfide in PM<sub>coarse</sub> was twice that in PM<sub>2.5</sub> for RT. Polystyrene is the 27 most abundant MP in AF. LB shows the distinguishing feature of benzothiazoles, especially 2-28 benzothiazolyl-N-morpholinosulfide and N-cyclohexyl-2-benzothiazolesulfenamide. The eco-29 health risk assessments reveal combustion-derived MPs (PB and FB) pose the highest ecological 30 risk (Level III). Elevated hazard indices to human health were observed in LB and PB, primarily 31 attributed to bis(2-ethylhexyl) phthalate. Notably, poly(methyl methacrylate, polyethylene 32 terephthalate, polyethylene, bisphenol A and phthalates emerged as key drivers of oxidative stress. 33 This study advances the understanding of atmospheric MPs, offering critical insights for source 34 tracking and risk assessment to mitigate their eco-health effects. 35 Keywords: Microplastic and plasticizer emission source; size distribution; Phthalates (PAEs); 36 eco-health risk; ROS





1. Introduction

39 Global plastic production has gradually increased since the 1950s, resulting in serious 40 environmental contamination (Klein et al., 2023). Waste plastics have accumulated in the 41 environment to be degraded into plastic debris under the influences of UV-radiation, mechanic 42 abrasion and temperature changes (Peeken et al., 2018; Akhbarizadeh et al., 2021). Microplastics 43 (MPs) are plastic particles with 1 µm-5 mm in size (Can-Guven, 2021). Current research on MPs pollution sources have primarily focused on aquatic and terrestrial ecosystems (Allen et al., 2020). 44 Understanding the sources of atmospheric MPs can assist develop efficient MPs management 45 46 strategy. 47 Common atmospheric MPs sources include waste incineration, agricultural activities and road 48 traffic (Panko et al., 2013; Luo et al., 2022; Yang et al., 2024; Chen et al., 2024). Incineration 49 activities can lead to the fragmentation of plastics, accelerating the release of MPs (Luo et al., 2022; 50 Luo et al., 2024b). Yang et al. (2021) have estimated that per metric ton of plastic can produce 360 51 to 102,000 MPs, primarily composed of polypropylene (PP) and polystyrene (PS). Agricultural 52 activities also a significant contributor to atmospheric MPs (Jin et al., 2022). The large consumption 53 of plastic film combined with short life cycle results in a number of films being left in farming soil, 54 then transforming into MPs via degradation or fragmentation (Brahney et al., 2021; Wang et al., 55 2022a; Aini et al., 2023). Furthermore, tire and road wear microplastics (TRWMPs), producing from 56 the interaction between tires and the road surface, is a significant source of atmospheric MPs (Panko 57 et al., 2013; Liu et al., 2023). Evangeliou et al. (2020) have estimated that annual total global tire wear particle emissions were 2907 kt y<sup>-1</sup>, with 29 and 288 kt y<sup>-1</sup> for PM<sub>2.5</sub> and PM<sub>10</sub>, respectively. 58 59 Liu et al. (2023) have showed rubbers were the dominant compounds of TRWMPs in PM<sub>2.5</sub> in





60 tunnels, including natural rubber (NR), styrene-butadiene rubber (SBR), and butadiene rubber (BR) 61 polymers. 62 Plasticizers are widely used in the production of plastics in order to achieve the desired material 63 properties (Demir and Ulutan, 2013). Since plasticizers are not chemically bound to the plastic products, they can easily diffuse into the surrounding environment during the life-time (Demir and 64 65 Ulutan, 2013; Yadav et al., 2017). Simoneit et al. (2005) illustrated that the major plasticizers detected in particulate matters (PMs) from open-burning of plastics were dibutyl phthalate (DBP), 66 diethylhexyl adipate (DEHA) and diethylhexyl phthalate (DEHP). Zeng et al. (2020) reported 67 68 phthalate concentrations in greenhouses air were higher than that in ambient air. Liu et al. (2023) found that phthalates were the most dominant plasticizer compositions in tunnel PM<sub>2.5</sub>, accounting 69 70 for 64.8% of the detected plasticizers. Zhang et al. (2018) demonstrated that tire material-related 71 compounds, benzothiazole (BT) and 2-hydroxybenzothiazole (2-OH-BT) were the major 72 compounds in both tire and road dust samples. The majority of existing studies on atmospheric MPs 73 and plasticizers have focused on analyzing the emission characteristics of individual source and 74 lacked a comprehensive and comparative analysis of the MPs emission profiles of various sources. 75 MPs and plasticizers can remain suspended and spread to other areas when they emitted from 76 the sources into the air (Gasperi et al., 2018). Airborne MPs can easily enter the human body directly 77 via respiration compared to other environmental media, posing a serious health concern (Liao et al., 78 2021). Recent studies suggest that these inhaled pollutants can promote reactive oxygen species 79 (ROS) generation (Wang et al., 2024). This ROS overproduction acts as a central driver of oxidative 80 stress, which can damage biomolecules and disrupt cellular functions (Bates et al., 2019; Jiang et

al., 2019). Oxidative potential (OP) is a metric reflecting the ability of inhaled pollutants to produce





82 ROS, serving as a critical indicator of PM toxicity (Jiang et al., 2019; Bates et al., 2019; Luo et al., 83 2024c). Previous studies have demonstrated that metals and organic compounds can affect the OP 84 of PMs (Ghanem et al., 2021; Luo et al., 2023). However, studies focusing on health risk 85 assessments of MPs and plasticizers emitted from atmospheric pollution sources remain scarce. The Guanzhong Plain located in the central of Shaanxi Province, northwestern China, 86 87 inevitably consumes a large number of plastics with a developed economy and a large population 88 (Chen et al., 2022; Wang et al., 2022b; Xu et al., 2024). The environmental conditions of strong wind and ultraviolet ray in this area exacerbate the problem of atmospheric MPs pollution. There is 89 90 a notable absence of systematic comparative analyses examining the emission profiles across 91 various emission sources, which is the key to controlling MPs pollution. The primary aims of this 92 research are to (i) characterize the distributions of MPs and plasticizers in dual-size PMs (PM<sub>2.5</sub>, 93 PM<sub>coarse</sub>) from typical MP sources in the Guanzhong Plain, (ii) obtain MPs and plasticizers tracers 94 for the five typical MP sources, and (iii) evaluate the health risks of MPs and plasticizers in PM<sub>2.5</sub> 95 and PM<sub>10</sub>. This study could provide valuable scientific support for the development of targeted 96 pollution control strategies, as well as sustainable improvement of the regional environment and public health protection. 98 2. Methods 99 2.1 Sample collection and gravimetric method 100 This study selected five typical emission sources of MPs from the Guanzhong Plain, including 101 plastic burning (PB), fruit bag burning (FB), road traffic (RT), agricultural film (AF) and livestock 102 breeding (LB). It should be noted that PB burned plastics including plastic bags, bottles, disposable 103 tableware, foam boxes and other plastic daily necessities. Fruit bags are designed to enhance fruit





104 quality by shielding them from pests, diseases, and direct pesticide contact, also containing some 105 plastic components (Ali et al., 2021). The Guanzhong Plain is an important fruit production base in 106 China, with the highest consumption of fruit bags. Local residents often use the above-mentioned 107 plastic products to ignite solid fuels for indoor heating or cooking. Table 1 provides a summary of 108 the essential details for each source. 109 During January and February 2024, PM<sub>2.5</sub> and PM<sub>10</sub> samples were collected simultaneously 110 from five distinct sources in three key cities of the Guanzhong Plain: Xi'an, Tongchuan, and 111 Xianyang. The specimens were gathered using pre-fired quartz-fiber filters (QM/A, PALL, Ann 112 Arbor, MI, USA) with a diameter of 47 mm, which had been subjected to a temperature of 780 °C 113 for 3 hours (Wang et al., 2022b). MiniVOL samplers (Airmetrics, Springfield, OR, USA) were 114 employed for collection, operating at a steady flow rate of 5 L min<sup>-1</sup> (Wang et al., 2022b) (Figure 115 S1). Sampling durations for each source ranged from 2 to 24 hours, depending on the emission 116 amount. In AF and LB, the sampler was set at about 1.5 m height, corresponding to the human 117 breathing height. For PB, FB and RT, the sampling heights were related to the height of the chimney 118 and flyover, about 3-4 m above the ground. The field blank of each type of source was 119 synchronously collected.

Table 1 Basic sampling information of target emission sources

| Emission source              | Sampling duration (h) | Sampling<br>height           | Sample<br>No. | Sampling location                                  |
|------------------------------|-----------------------|------------------------------|---------------|----------------------------------------------------|
| Plastic burning (PB)         | 2.0                   | 3-4 m<br>above the<br>ground | 5             | Open space, about 1 m downwind of chimney of rural |
| Fruit bag<br>burning<br>(FB) | 2.0                   | 3-4 m above the ground       | 5             | household stove in rural<br>Xianyang               |
| Road Traffic                 | 13.6-14.1             | 3 m above                    | 5             | Open space, flyovers on traffic                    |





| (RT)               |                      | the ground      |                          | arteries in downtown Xi'an              |
|--------------------|----------------------|-----------------|--------------------------|-----------------------------------------|
| Agricultural       |                      | 1.5 m           |                          | Open space, about 2 m away              |
| film               | 24                   | above the       | 5                        | from the greenhouse in farmland         |
| (AF)               |                      | ground          |                          | in rural Tongchuan                      |
| Livestock          |                      | 1.5 m           |                          | About 1 m from the feed trough          |
| breeding           | 2.5-3.5              | above the       | 5                        | in a cow shed of approximately          |
| (LB)               |                      | ground          |                          | 8 m <sup>2</sup> in rural Tongchuan     |
| Filters were       | transferred using    | stainless steel | tweezers into            | pre-labeled clean-air cassettes after   |
| collection and fr  | rozen at-20°C ur     | til chemical a  | analyses. An             | electronic microbalance (± 1 μg         |
| sensitivity, ME 5  | -F, Sartorius, Ger   | many) was use   | ed to weigh t            | the filters before and after sampling   |
| (Wang et al., 202  | 2b). Field blanks    | were processe   | d identically            | to the samples. Additionally, cotton    |
| lab coats and nitr | rile gloves were u   | tilized during  | sampling, wl             | hile the use of plastic materials was   |
| minimized (Bogd    | anowicz et al., 20   | 21).            |                          |                                         |
| 2.2 Chemica        | l analysis           |                 |                          |                                         |
| This study q       | uantified eight kir  | nds of micropla | astics and thre          | ee classes of plasticizers (phthalates, |
| benzothiazole and  | l its derivatives, b | isphenol A) in  | PM <sub>2.5</sub> and PM | $M_{10}$ samples.                       |
| Microplastic       | es (MPs): To qua     | ntify the conte | ents of the M            | IPs, a setup was employed where a       |
| Curie-point pyro   | lyzer (JHS-3, Ja     | pan Analytica   | l Industry C             | Co., Ltd) was connected to a gas        |
| chromatography-    | mass spectrometry    | (GC/MS) syst    | tem (7890GC              | 2/5975MS, Agilent Technology, USA)      |
| (Liu et al., 2023) | ). The pyrolysates   | s of polyethyle | ene (PE), pol            | lypropylene (PP), polystyrene (PS),     |
| polyethylene tere  | ephthalate (PET),    | poly(methyl     | methacrylate             | e) (PMMA), natural rubber (NR),         |
| styrene-butadiene  | rubber (SBR), ar     | nd butadiene r  | ubber (BR) v             | vere identified using mass spectrum     |
| fragments, retent  | ion times, and t     | arget product   | intensities c            | ompared to plastic standards. The       |
|                    |                      |                 |                          |                                         |

quantified markers for the pyrolyzed compounds are shown in Table S1. Details regarding

preparation of samples, instrument configurations, and QA/QC protocols are available in Sun et

al. (2022).

139





140 Phthalates (PAEs): A thermal desorber (TD) coupled with a GC/MS system 141 (7890GC/5975MS, Agilent Technology, USA) was utilized to analyze phthalates, including 142 dimethylphthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), butyl benzyl 143 phthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP), and di-n-octyl phthalate (DnOP). Aliquots of 144 the filters (1.5 cm<sup>2</sup>) were diced into smaller fragments, augmented with the internal standard 145 Chrysene-d12, and then inserted into TD tubes for analyses (Liu et al., 2023). The sample tube was 146 inserted directly into a GC injection port set to an initial temperature of 50 °C (Wang et al., 2016). 147 Analytical procedure details are detailed in Ho et al. (2019) and Liu et al. (2023). 148 Benzothiazole and its derivatives (BTs): Nine types of benzothiazole related compounds were 149 benzothiazole (BT), 2-hydroxy benzothiazole (HOBT), 2-150 mercaptobenzothiazole (MBT), 2-aminobenzothiazole (2-NH2-BT), 2-(methylthio)benzothiazole 151 (MTBT), 2-(4-morpholinyl)benzothiazole (24MoBT), N-cyclohexyl-2-benzothiazolamine (NCBA), 2-benzothiazolyl-N-morpholinosulfide (OBS), N-cyclohexyl-2-benzothiazolesulfenamide (CBS). 152 153 The appropriate filter sample was cut and spiked with an IS of benzothiazole-d4. After a series of 154 extraction and concentration procedures, the target analytes were washed out with 5 mL of methanol. 155 Before the analysis, the eluates were then dried to 1 mL under a stream of nitrogen (Zhang et al., 156 2018). Target analytes were separated using an ultra-performance liquid chromatography system

Bisphenol A (BPA): Quantification of total BPA and separation from the matrix components

(UPLC; ACQUITY, Waters, USA) and subsequently identified with a triple quadrupole mass

spectrometer (ESI-MS/MS; Xevo TQ-S, Waters, USA). Analytical details are provided in Zhang et

al. (2018).

157

158

159





were carried out by LC-fluorescence detection (García-Prieto et al., 2008). Mobile phase was 162 composed of acetonitrile and water (Zhou et al., 2011). The BPA standard was obtained from Sigma-Aldrich (USA). Moreover, all employed solvents and diluents were of HPLC grade and filtered 163 164 through 0.45 µm membranes. The sample extracted was separated by a PerkinElmer Brownlee<sup>TM</sup> 165 HRes Biphenyl 1.9 µm, 50 × 2.1 mm column with isocratic elution program of water: acetonitrile 166 (6:4) at 0.5 mL min<sup>-1</sup> for 4 min. The target analyte was measured using a fluorescence (FL) detector at excitation and emission wavelengths of 275 nm and 313 nm, respectively (García-Prieto et al., 167 168 2008). BPA levels were quantified based on measured peak areas (García-Prieto et al., 2008). 169 2.3 Oxidative potential determination with DTT assay 170 Four 0.526 cm<sup>2</sup> punches per sample from different sources were individually dissolved in 5 171 mL methanol (HPLC grade, Fisher Chemical) in an amber centrifuge tube and ultrasonically 172 extracted for 2 h. The PM extract was used for the subsequent analysis. 173 The Dithiothreitol (DTT) consumption in this study was quantified following the methodology 174 established by Luo et al. (2024c). 4 mL of sample extract was combined with 1 mL of 1 mM DTT 175 solution (≥98%, Meryer; pH 7.4 buffer), yielding a final concentration of 200 µM. At each time 176 point (0, 5, 15, 30, 45, and 60 min), 0.5 mL of the DTT reaction mixture was added to the amber 177 centrifuge tube preloaded with 0.5 mL of trichloroacetic acid (1%, w/v) to terminate the reaction. 178 Subsequently, 25 µL of 10 mM 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB, ≥98%, Meryer) and 179 1 mL of 1 M Tris-HCl buffer were added to each tube. The solutions (200  $\mu$ L) were transferred to 180 96-well plates, and absorbance at 412 nm using a microplate reader (Flex Station 3 Multi-Mode, 181 Molecular Devices). The volume-normalized DTT consumption rates for each sample were 182 calculated from absorbance measurements taken at predetermined time points (nmol min-1 m-3).





All procedures were performed under dark conditions (Luo et al., 2024c).

184 2.4 Risk assessment model

To evaluate the potential ecological risks, the hazard indices of various MPs were estimated using the Formula 1 (Xu et al., 2018; Wang et al., 2021a). The risk index (H) was calculated by

multiplying the proportion (P<sub>n</sub>) of each polymer identified in MPs by its respective hazard score (S<sub>n</sub>)

188 (Lithner et al., 2011).

respectively.

194

$$H = \Sigma Pn \times Sn \quad (1)$$

The average daily exposure dose (ADD) via respiratory inhalation was calculated by Formula
2, defined by the U.S. Environmental Protection Agency (U.S.EPA, 1989; Liu et al., 2023). The
non-carcinogenic and carcinogenic health risks of MPs and plasticizers were quantified using the
hazard quotient (HQ) (Formula 3) and incremental lifetime cancer risk (ILCR) (Formula 4),

195 
$$ADD = \frac{C \times ET \times IR \times EF \times ED}{AT \times BW}$$
 (2)
$$HQ = \frac{ADD}{RfD}$$
 (3)

197 
$$ILCR = ADD \times SF (4)$$

where C represents the measured mass concentration of MPs and plasticizers from five sources.

Exposure parameters included: ET (exposure time, 0.5 h d<sup>-1</sup> for combustion sources (PB and FB),

1.5 h d<sup>-1</sup> for others), IR (inhalation rate, 20 m<sup>3</sup> d<sup>-1</sup>), EF (exposure frequency, 120 d y<sup>-1</sup> for PB and

FB, 350 d y<sup>-1</sup> for others), ED (exposure duration, 30 years), AT (average exposure time, ED×365 d

y<sup>-1</sup>×24 h), and BW (adult body weight, 70 kg). Reference dose (RfD) and slope factor (SF) were

obtained from the Integrated Risk Information System of U.S. EPA (https://www.epa.gov/iris) and

Ma et al. (2020) as detailed in Table S6.





205 2.5 Data analysis 206 Data entry and organization were conducted using Excel 2016 (Microsoft Corporation, 207 Redmond, WA, USA), while one-way analysis of variance (ANOVA) was performed with SPSS 208 26.0 (IBM, Armonk, NY, USA). Spearman correlation analysis was used to assess the relationships 209 of MPs and plasticizers with ROS, respectively. Additionally, all data are presented as mean ± 210 standard deviation, with significant differences denoted by P<0.05. 211 The Source-Pathway-Receptor (SPR) model serves as a key tool for illustrating how 212 environmental pollutants travel from their origins, navigate various pathways, and ultimately reach 213 potential receptors (Waldschläger et al., 2020). 214 3. Results and discussion 215 3.1 Concentrations of microplastic and plasticizer 216 For the convenience of comparison, we subtracted the concentrations of MPs and plasticizers 217 in  $PM_{2.5}$  from  $PM_{10}$  in this study to obtain their concentrations in coarser particulate matter ( $PM_{coarse}$ ). 218 The total concentrations of MPs and plasticizers in PM<sub>2.5</sub> and PM<sub>coarse</sub> from five different sources 219 are presented in Figure 1. MPs were more enriched in PMcoarse in FB (59% of PM10), while higher 220 in PM<sub>2.5</sub> for the remaining four sources (PB, RT, AF and LB). The fruit bags are coated with wax 221 layer for enhancing the waterproofing and durability of the material. The presence of this wax layer 222 may affect particle formation during combustion, contributing to the creation of larger agglomerates 223 and thus a higher proportion of coarse particles. Notably, MPs in PB and LB constituted a 224 comparable proportion in both PM<sub>2.5</sub> and PM<sub>coarse</sub>, both close to 50%. The variable order of MPs 225 concentrations in the five sources in PM<sub>coarse</sub> was roughly consistent with that of PM<sub>2.5</sub>, showing 226 PB>FB>LB>AF>RT. The average concentration of MPs was ranging from 77.7 ± 25.3 (RT) to 1906





 $\pm$  587 (PB) ng m<sup>-3</sup> in fine fraction and from 41.5  $\pm$  11.7 (RT) to 1634  $\pm$  20.3 (PB) ng m<sup>-3</sup> in coarse fraction of PMs, as summarized in Table S2. The highest MPs concentrations in fine and coarse PMs in PB source were both ~5 times higher than the averages of that in other sources. One possible explanation for this is that plastic waste can be crushed into MPs during the process of combustion (Yang et al., 2021; Luo et al., 2024a). Another important pathway for elevated MPs from PB is the resuspension of bottom ash (Yang et al., 2021).



Figure 1 Average concentrations of MPs (a) and plasticizers (b) in PM<sub>2.5</sub> and PM<sub>coarse</sub> from five

sources (PB: Plastic burning, FB: Fruit bag burning, RT: Road traffic, AF: Agricultural film, LB:

Livestock breeding. The error bars represent standard deviation of PM<sub>10</sub>).

The total concentrations of the plasticizers in the samples were one order of magnitude higher than those of MPs (Table S2). The mass concentrations of plasticizers were higher in PM<sub>2.5</sub> than in PM<sub>coarse</sub> for FB, RT, AF and LB sources, especially with the value of 80% in fine particles from RT. Both MP and plasticizers in RT were more abundant in PM<sub>2.5</sub>, which enhances the potential for long-range transport and respiratory penetration. Therefore, even though the emission concentrations from RT were lower, the potential environmental and health risks posed by RT cannot be overlooked. Conversely, plasticizers in PB were abundant in PM<sub>coarse</sub> (59%). The highest concentration values of plasticizer in this study were also observed in PB (15.6  $\pm$  5.61  $\mu$ g m<sup>-3</sup> in





245  $PM_{2.5}$ ,  $22.3 \pm 1.68 \mu g m^{-3}$  in  $PM_{coarse}$ ), followed by FB (4.53  $\pm$  0.39  $\mu g m^{-3}$  in  $PM_{2.5}$ ,  $2.75 \pm 0.65 \mu g$ 246 m<sup>3</sup> in PM<sub>coarse</sub>). This is because that plastic products contain many additives to enhance their 247 performance (Do et al., 2022). Many additives are not covalently bound to the polymer matrix, 248 resulting in the liberation of plastic additives during the crushing and combustion (Do et al., 2022; 249 Billings et al., 2023). Furthermore, LB exhibited a higher emission for plasticizers in noncombustion sources (RT and AF; P<0.05 in PM<sub>2.5</sub>), with the values of  $2.17 \pm 1.05$  and  $1.16 \pm 0.88$ 250 251 μg m<sup>-3</sup> respectively for PM<sub>2.5</sub> and PM<sub>coarse</sub>. The lack of an effective plastic recycling and disposal 252 system under the traditional retail farming may exacerbate the release of plasticizers. 253 3.2 Chemical composition of microplastics 254 The proportions of MPs identified in PM<sub>2.5</sub> and PM<sub>coarse</sub> for the five sources are presented in 255 Figure 2. The composition of MPs from five sources varied greatly, but no significant size 256 distribution difference in the same source. RT exhibits distinctive features from other four rural 257 sources with the high proportions of both BR+SBR and NR in PM<sub>2.5</sub> (46.2% and 33.3% of MPs, respectively) and PM<sub>coarse</sub> (50.7% and 18.6% of MPs, respectively), which are the basic material of 258 259 tire treads. In previous studies, BR+SBR is observed to be the predominate MPs in light-duty 260 vehicle tires in the tunnel PM2.5, and conversely, NR is extensively used in tire treads for trucks (Liu 261 et al., 2023). The RT sample collection in this work was done in the downtown flyover in urban 262 Xi'an, where light-duty cars are the dominant vehicle type, explaining the high proportion of 263 BR+SBR than NR both in  $PM_{2.5}$  and  $PM_{coarse}$ .



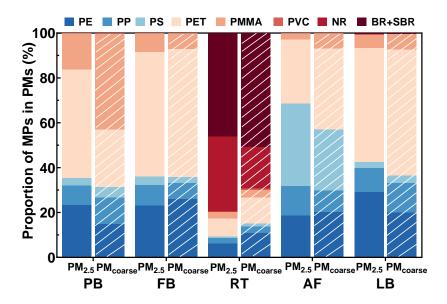



Figure 2 Chemical composition of microplastics in PM<sub>coarse</sub> and PM<sub>2.5</sub> from the five sources.

The MP compositions of PB, FB, AF and LB were relatively similar. PET was the most common polymer type in MPs (Figure 2), which is widely used in the production of textiles. PB source inevitably included a certain amount of waste textiles, inducing the release of PET (Yang et al., 2021). Moreover, PET is widely applied in packaging and agriculture due to its advantageous properties, such as good strength, durability, elasticity, clarity, etc. (Liu et al., 2019; Lu et al., 2024). These materials may break into MPs due to wear and tear, subsequently discharging into the agricultural and breeding environment. Moreover, the highest proportion of PS was found in AF, attributed to its major ingredient in raw material of lamp-chimneys, electrical devices, packaging, etc., which are generally present in greenhouses (Qi et al., 2023).

#### 3.3 Chemical composition of plasticizers

PAEs were the most prevalent (> 90%) among the three plasticizers in the five sources in this study. PAEs have been the most widely used plasticizer and the global production is expected to

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299





reach 500 million tons by 2050 (Huang et al., 2021; Billings et al., 2024). The levels of the total PAEs ranged from  $468 \pm 175$  ng m<sup>-3</sup> (AF)-15640  $\pm 5609$  ng m<sup>-3</sup> (PB) in PM<sub>2.5</sub> and  $115 \pm 54.4$  ng m<sup>-3</sup> <sup>3</sup> (RT)-22274 ± 1680 ng m<sup>-3</sup> (PB) in PM<sub>coarse</sub> (Table S2). The percentages of BTs and BPA of the three detected plasticizers were typically below 2%. PB also exhibited the highest concentrations for other two kinds of plasticizers. The concentrations of BPA in PB and FB were an order of magnitude higher than RT and AF (Table S2). The result indicated that plastic incineration is the primary emission source of atmospheric plasticizers, in agreement with prior researches (Zhen et al., 2019; Chandra and Chakraborty, 2023). Relative to other sources, RT demonstrated a higher concentration of BTs  $(34.8 \pm 13.0 \text{ ng m}^{-3})$ for  $PM_{2.5}$ , P<0.05;  $12.9\pm7.28$  ng m<sup>-3</sup> for  $PM_{coarse}$ ) (Table S2). This may be related to the widespread use of BTs in tyre manufacturing and these additives are released into the air during friction between tyre and road surface (Liu et al., 2023). At the same time, some tire rubber substances were also involved in the plastic combustion source of this study. LB exhibited the highest emission of BPA among non-combustion sources, with the values of  $50.9 \pm 27.1$  and  $38.6 \pm 22.2$  ng m<sup>-3</sup> respectively for PM<sub>2.5</sub> and PM<sub>coarse</sub>, higher than RT (4.43  $\pm$  1.45 and 7.8  $\pm$  0.9 ng m<sup>-3</sup>, P<0.05) and AF (1.4  $\pm$ 0.71 and  $4.29 \pm 6.68$  ng m<sup>-3</sup>, P<0.05), partly due to the migration of BPA from animal feed plastic packaging into the air (Wang et al., 2021b; Wang et al., 2021c). Furthermore, BTs, PAEs, and BPA from sources except for PB were prevalent in PM2.5 relative to PMcoarse, contrary to the results reported by Nunez et al. (2020). Compositions and distributions of PAEs: DnOP was the most abundant PAE specie across PB, FB, RT, and AF. For FB, DnOP was significantly more prevalent in  $PM_{coarse}$ , accounting for 51%of the total PAEs, compared to 36% in PM2.5. Conversely, DnOP was more abundant in fine (59%)

# https://doi.org/10.5194/egusphere-2025-1821 Preprint. Discussion started: 5 May 2025 © Author(s) 2025. CC BY 4.0 License.





300 fraction of PMs than coarse (44%) in RT. As a common plasticizer, DnOP possesses a high 301 molecular weight and low volatility, increasing its persistence in the environment. In addition to 302 DnOP, DEHP and BBP were also identified as the major components in five sources. DEHP was a second abundant PAE component in RT (23% and 30% of PAEs in PM<sub>2.5</sub> and PM<sub>coarse</sub>), as it has a 303 304 high consumption in plasticizers market, especially in automobile industry (Zhen et al., 2019; Lu et 305 al., 2023). While the lowest percentage of DEHP in AF in both PM2.5 and PMcoarse (13%, 12%) among five sources is the significant characteristic for AF. BBP was the most abundant PAE in 306 307 PM<sub>coarse</sub> in LB, and the proportion was higher in coarse (40%) than fine (28%) PMs. Moreover, as 308 shown in Figure 3, the proportions of sum of DMP, DEP and DBP were below 30% in both PM<sub>2.5</sub> 309 and PM<sub>coarse</sub>, and were even below 15% in FB and RT. The proportion of DEP (12% and 15% in 310 PM<sub>2.5</sub> and PM<sub>coarse</sub>, respectively) was the highest in PB compared to other sources, which could be 311 used as the source marker (Figure 3a).



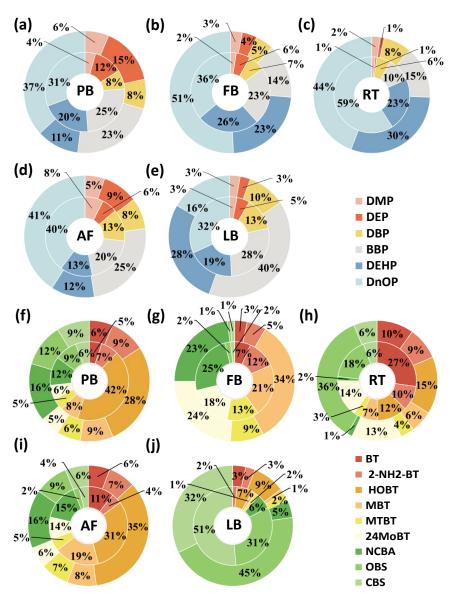



Figure 3 Mass proportions of PAEs (a, b, c, d, e) and BTs (f, g, h, i, j) in PM<sub>coarse</sub> (outer ring)

and PM<sub>2.5</sub> (inner ring) in the five typical sources.

Compositions and distributions of BTs: The distribution patterns of BTs in the five typical MP sources in PM<sub>2.5</sub> and PM<sub>coarse</sub> were more different than PAEs. The compositions of PB and AF were quite similar, may proving that rural households use discarded agricultural film for heating or

312313

314

315

316



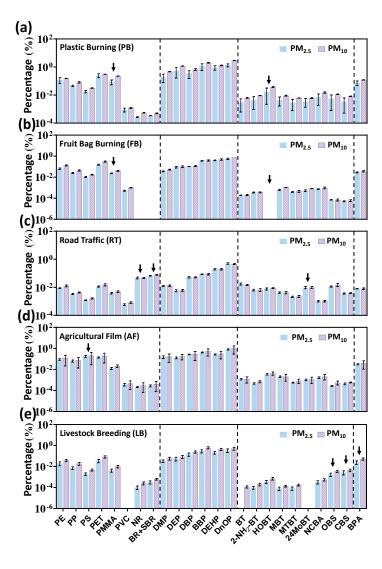


319 with values of 42%, 31%, respectively for PM<sub>2.5</sub> and 28%, 35% for PM<sub>coarse</sub> (Figure 3f, 3i). Furthermore, MBT was more prominent than other species for FB, with the values of more than 320 321 20%. The abundances of OBS in PM<sub>coarse</sub> (36%) were higher than that in PM<sub>2.5</sub> (18%) for RT. Some 322 previous studies have implied the main use of OBS in tire manufacture (Liao et al., 2018; Liu et al., 323 2023). BT in RT was more predominant in PM<sub>2.5</sub> (27%) compared to PM<sub>coarse</sub> (10%), aligning with 324 the prevalence of MPs and plasticizers in PM<sub>2.5</sub> in RT. A high concentration of BT in tire debris was 325 reported from Sweden demonstrating that tire wear is the main cause of RT pollution (Avagyan et 326 al., 2014). OBS+CBS accounted for more than 70% of BTs only in LB, which were significantly 327 higher than those in other sources and could be used as the source markers. 328 3.4 Source profiles of MPs and plasticizers 329 The source profiles of MPs, BTs, PAEs, and BPA in PM<sub>10</sub> and PM<sub>2.5</sub> emitted from the five 330 emission sources are shown in Figure 4. The distribution patterns of each chemical species exhibit 331 insignificant differences between PM<sub>2.5</sub> and PM<sub>10</sub>. DnOP emerged as the predominant contributor 332 across all sources, with PB being the most significant, representing 1.4% and 2.9% of PM<sub>2.5</sub> and 333 PM<sub>10</sub> mass concentrations, respectively. The profiles of the combustion sources (PB and FB) were 334 more similar. However, PMMA exhibited a higher proportion in PB (0.085% and 0.23% in PM<sub>2.5</sub> 335 and PM<sub>10</sub>, respectively) compared to FB (0.023% and 0.041%). In addition, HOBT, the most 336 abundant BT derivative in the current study, accounted for 0.024% in  $PM_{2.5}$  and 0.037% in  $PM_{10}$  in 337 PB, but less than 0.001% in FB. For non-combustion sources, RT were significantly influenced by tire wear particles, which characterized by high abundances of tire-related material, such as NR 338 339 (0.047%) and BR+SBR (0.072%). Moreover, 24MoBT constituted the highest percentage of BTs in 18

cooking during indoor fuel combustion. HOBT was the most abundant compound in PB and AF,

341

342


343

344





RT source, which can also be used as the indicator of vehicle emission plasticizer. PS is widely used in greenhouse agricultural films (Liu et al., 2019), which constituted a higher proportion in PMs than PET in AF, with 0.18%, 0.14% respectively to PM<sub>2.5</sub> and 0.16%, 0.15% to PM<sub>10</sub>. OBS and CBS were the prevalent BT compounds in LB, and BPA played a more significant contribution to PM<sub>10</sub> than PM<sub>2.5</sub> in LB source.



345346

Figure 4 Source profiles of microplastics and plasticizers in  $PM_{2.5}$  and  $PM_{10}$  (The black arrows





indicate the source markers).

#### 3.5 Eco-health significance

In this section, a comprehensive eco-health risk evaluation system was established to provide scientific support for estimating the hazards of MP and plasticizers from different sources. 1) The transport pathways of MPs and plasticizers from PB, RT, and AF sources were analyzed to clarify the exposure routes from "source" to "receptor" (Figure 5). 2) The ecological and health risks of MPs and plasticizers were assessed through different evaluation metrics (H, HI, ILCR and oxidation potential (OP)).

#### 3.5.1 Transport pathways of MPs and plasticizers

As shown in Figure 5, plastic combustion emits MPs and attached plasticizers into the ambient air (Velis and Cook, 2021); the residual in the bottom ash can break into MPs via wind abrasion, then re-suspending into the air or depositing onto surrounding soil or into water with a risk of entering the food chain (Yang et al., 2021; Velis and Cook, 2021; Pathak et al., 2024). Small microplastics (micro-rubber) from RT emitted as airborne fine particles or trapped in the road surface, which can enter the water by surface runoff, migrating and transforming in different environmental media (Kole et al., 2017). Under ultraviolet degradation and wind erosion, agricultural films can release MPs and plasticizers into the air directly, while larger particles are deposited in farmland (Song et al., 2017). Disturbed by agricultural activities and wind, MPs created by residual films in the soil may resuspend into the air (Brahney et al., 2021; Jin et al., 2022). These pathways are all possible ways for MPs to be exposed to the human body, and controlling these pathways can reduce exposure levels.





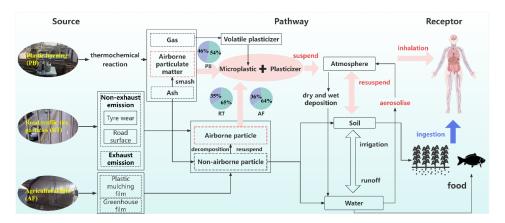



Figure 5 Source-Pathway-Receptor model associated with three different MP and plasticizer sources (The sections marked in red represent atmospheric transport pathways of MPs and plasticizers; the pie charts represent MP proportions in PM<sub>2.5</sub> (green) and PM<sub>coarse</sub> (purple) from PB, RT, and AF).

## 3.5.2 Risk assessment of MPs

Based on the ecological risks of MPs for different sources (Table S5), PB and FB were categorized as Level III (high risk). This may be attributed to the fact that PMMA, a compound with high hazard score, accounted for a higher proportion of MPs emitted from combustion sources. In contrast, RT, AF, and LB sources, with lower hazard scores, were categorized as Level II (lower risk).

In this study, the health risks of MPs and plasticizers in PM<sub>2.5</sub> and PM<sub>10</sub> from five sources were analyzed as well. The total non-carcinogenic risk (HI) ranged from  $1.36 \times 10^{-4}$  (AF) to  $5.20 \times 10^{-4}$  (LB) in PM<sub>2.5</sub> and  $2.01 \times 10^{-4}$  (RT) to  $8.96 \times 10^{-4}$  (LB) in PM<sub>10</sub>, inconsistent with the mass concentration ranking of MPs and plasticizers in various sources. All HI values of each source were significantly lower than the international safety threshold (HI=1). The highest HI was observed in





| 384 | LB, followed by PB, with values of $4.49 \times 10^{-4}$ and $8.73 \times 10^{-4}$ for PM <sub>2.5</sub> and PM <sub>10</sub> , respectively. |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 385 | Figure S2 illustrated the contributions of different compounds to HI. PAEs contributed most                                                   |
| 386 | significantly to HI, accounting for more than 60% in most sources, especially in LB (93.6% and                                                |
| 387 | $92.9\%$ for $PM_{2.5}$ and $PM_{10}$ , respectively). Among all compounds, one of PAEs, DEHP displayed the                                   |
| 388 | highest non-carcinogenic risk (Figure S2). In RT source, BT and MBT exhibited the higher HI than                                              |
| 389 | other sources, with BT accounting for 20.3% (PM $_{2.5}$ ) and 18.1% (PM $_{10}$ ), followed by MBT (6.5%                                     |
| 390 | and 6.7%, respectively). Moreover, PS in AF exhibited the prominent HI values, with the proportion                                            |
| 391 | of 27.6% and 26.3% for $PM_{2.5}$ and $PM_{10}$ , respectively, 10-77 times higher than other sources. These                                  |
| 392 | findings emphasize the need to focus on PAE in LB, BT and MBT in RT and PS in AF as a priority                                                |
| 393 | for MPs pollution control, aiming to minimize associated human non-carcinogenic risks.                                                        |
| 394 | ILCR for the three carcinogenic compounds (BT, BBP, and DEHP) were calculated in this                                                         |
| 395 | study. The ILCR values for each compound varied between $7.03\times10^{-16}$ and $1.77\times10^{-7}$ , which are all                          |
| 396 | below the safety threshold $(10^{-6})$ . But this cannot be taken lightly, as there are many types of                                         |
| 397 | environmental pollutants, and their carcinogenic risks are additive and cumulative. Compared to                                               |
| 398 | other sources, LB had the highest total ILCR values ( $\Sigma$ ILCR) (1.01×10 <sup>-7</sup> in PM <sub>2.5</sub> and 1.8×10 <sup>-7</sup>     |
| 399 | $PM_{10}$ ), although the mass concentration of MPs and plasticizers in this source is not the highest.                                       |
| 400 | Combined with the HI results, we can see that LB emit the higher concentrations of toxic MPs and                                              |
| 401 | plasticizers, increasing the human health risk. Comparison of the carcinogenic risks of different                                             |
| 402 | compounds showed that DEHP accounted for more than 97% of $\Sigma$ ILCR in each source, which is                                              |
| 403 | the species that needs to be controlled the most in this study.                                                                               |
| 404 | 3.5.3 Effect of MPs and plasticizers on ROS generation                                                                                        |
| 405 | Figure S3 demonstrates the ROS generation capacity of $PM_{2.5}$ and $PM_{10}$ from five sources.                                             |





406 Overall, PM<sub>2.5</sub> exhibits a generally higher level of OP than PM<sub>10</sub>, suggesting a greater contribution 407 of fine particles to ROS generation. The larger specific surface area of PM2.5 can enhance its reactivity with DTT and facilitate ROS production (Boogaard et al., 2012; Feng et al., 2016; Chirizzi 408 409 et al., 2017). Moreover, the presence of certain components in PM<sub>coarse</sub> may actually weaken the 410 ability of PM<sub>2.5</sub> components to induce ROS production (Boogaard et al., 2012; Chirizzi et al., 2017). 411 This may suggest a completely different mechanism for the generation of ROS between coarse and 412 fine particles. Therefore, the results show that PM<sub>10</sub> has lower ROS than PM<sub>2.5</sub> for mostly sources 413 in this study (PB, FB, AF, and LB), which requires further research in the future. 414 PM<sub>2.5</sub> from FB exhibited the highest ROS activity with a value of 77.0 nmol min<sup>-1</sup> m<sup>-3</sup>, while 415 its PM<sub>10</sub> DTT value was only 18.32 nmol min<sup>-1</sup> m<sup>-3</sup>, indicating that OP of FB was mainly driven 416 by PM<sub>2.5</sub>. For PB, the DTT values of PM<sub>2.5</sub> and PM<sub>10</sub> were 58.6 and 28.0 nmol min<sup>-1</sup> m<sup>-3</sup>, 417 respectively, both at relatively high levels. In contrast, PM<sub>2.5</sub> from road sources showed a low OP 418 (0.75 nmol min<sup>-1</sup> m<sup>-3</sup>), and RT was the only source with a higher ROS production potential for 419 PM<sub>10</sub> than PM<sub>2.5</sub>. This is likely attributed to the unique characteristics of road dust, which is rich in 420 coarse particles (Boogaard et al., 2012; Pant et al., 2015; Shirmohammadi et al., 2017). Road dust 421 contains a high concentration of metal compounds, catalyzing the formation of ROS 422 (Shirmohammadi et al., 2017). Future research should focus on the size dependency of OP for 423 different sources, as it has significant implications for health impact. 424 To investigate the impact of MPs and plasticizers on OP, spearman correlation analysis was 425 employed to assess the relationships between these compounds and DTT. As shown in Figure 6, 426 PMMA (R=0.77, p<0.01), PET (R=0.72, p<0.05), and PE (R=0.72, p<0.05) showed a positive 427 correlation with DTT, indicating that these components enhance ROS generation obviously.





Additionally, all PAE species exhibited significant positive correlations with DTT (R=0.70-0.77, p<0.05), especially DnOP (R=0.77, p<0.01) and DEHP (R=0.76, p<0.05). The significant association of BPA with DTT (R=0.70, p<0.05) further corroborated its established impact on oxidative damage (Zhang et al., 2022). However, among BTs, only NCBA showed a weak correlation with DTT (R=0.65, p<0.05). These findings suggest that BTs may contribute minimally to oxidative stress, on the contrary, PMMA, PET, PE, BPA and PAEs are the main drivers of ROS generation.

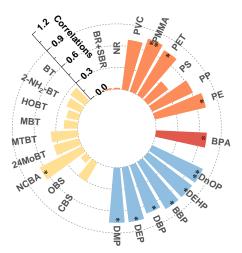



Figure 6 Correlations between DTT, MPs, and plasticizers (\*P < 0.05; \*\*P < 0.01)

### 4. Conclusion

In this study, the five typical plastic emission sources in the Guanzhong Plain, China were selected to investigate the characteristics of MPs and plasticizers in PM<sub>2.5</sub> and PM<sub>coarse</sub>. The concentration levels of MPs and plasticizers in combustion sources (PB and FB) were higher than non-combustion sources (RT, AF, and LB), highlighting the necessity of tightening plastic combustion regulations to address atmospheric MPs pollution. Most detected MP and plasticizer





443 were more abundant in PM<sub>2.5</sub> than PM<sub>coarse</sub> for most sources. PB is recognized by high loadings of 444 HOBT, PMMA and DEP. FB exhibits the high abundances of DnOP and higher in PMcoarse than 445 PM<sub>2.5</sub>. Since tire wear particle is one of the main sources of road traffic MPs, rubber compositions 446 (NR, BR+SBR) accounted for the highest proportions. AF is mainly characterized by high 447 abundance of PS. The high proportions of OBS and CBS can distinguish LB from the other sources 448 and there are still many unknown aspects of LB sources that require future research attention. This 449 study develops a complete eco-health risk assessment system, identifying combustion sources (PB 450 and FB) as the high ecological risk emitters, LB as the high health risk contributor, and DEHP as a 451 key health damage pollutant due to its combined non-carcinogenic risk, carcinogenic risk, and 452 oxidative stress generation effects. Our results could contribute to provide a scientific foundation 453 for accurately identifying the sources and risks of atmospheric MPs, and developing efficient 454 management strategies. 455 Data availability 456 Data will be made available on request. 457 Declaration of competing interest 458 The authors declare that they have no known competing financial interests or personal 459 relationships that could have appeared to influence the work reported in this paper. 460 Supplementary data Supplementary data in this manuscript can be found in Supporting Information. 461 462 Author contribution 463 Liyan Liu: Data Curation, Formal analysis, Writing-Original draft preparation; Hongmei Xu: 464 Supervision, Project administration, Funding acquisition, Writing-Original draft preparation;





Mengyun Yang: Data Curation, Investigation; Abdullah Akhtar: Investigation, Data Curation; Jian 466 Sun: Investigation; Zhenxing Shen: Review & Edit, Supervision. 467 Acknowledgments 468 This research was supported by Shaanxi Provincial Science Fund for Distinguished Young Scholars (2023-JC-JQ-26) and Key Laboratory Open Foundation of Shaanxi Provincial 469 470 Environmental Media Trace Pollutants Monitoring and Warning (SHJKFJJ-ZD-202405). We would 471 like to express our sincere gratitude to Hongmeng Reference Material for their generous support. 472 Reference 473 Aini S.A., Syafiuddin A., Kueh A.B.H., Quantification, characteristics, and distribution of microplastics 474 released from waste burning furnaces and their associated health impacts. Environmental 475 Quality Management, 2023, 33, 303-310. 476 Akhbarizadeh R., Dobaradaran S., Torkmahalleh M.A., et al., Suspended fine particulate matter (PM2.5), 477 microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: Their possible 478 relationships and health implications. Environ. Res., 2021, 192, 12. 479 Ali M.M., Anwar R., Yousef A.F., et al., Influence of Bagging on the Development and Quality of Fruits. 480 Plants-Basel, 2021, 10, 16. 481 Allen S., Allen D., Moss K., et al., Examination of the ocean as a source for atmospheric microplastics. 482 Plos One, 2020, 15, 483 Avagyan R., Sadiktsis I., Bergvall C., et al., Tire tread wear particles in ambient air-a previously unknown 484 source of human exposure to the biocide 2-mercaptobenzothiazole. Environ. Sci. Pollut. Res., 485 2014, 21, 11580-11586. 486 Bates J.T., Fang T., Verma V., et al., Review of Acellular Assays of Ambient Particulate Matter Oxidative 487 Potential: Methods and Relationships with Composition, Sources, and Health Effects. Environ. 488 Sci. Technol., 2019, 53, 4003-4019. 489 Billings A., Jones K.C., Pereira M.G., et al., Emerging and legacy plasticisers in coastal and estuarine 490 environments: A review. Sci. Total Environ., 2024, 908, 491 Bogdanowicz A., Zubrowska-Sudol M., Krasinski A., et al., Cross-Contamination as a Problem in 492 Collection and Analysis of Environmental Samples Containing Microplastics-A Review. 493 Sustainability, 2021, 13, 18. 494 Boogaard H., Janssen N.A.H., Fischer P.H., et al., Contrasts in Oxidative Potential and Other Particulate 495 Matter Characteristics Collected Near Major Streets and Background Locations. Environmental 496 Health Perspectives, 2012, 120, 185-191. 497 Brahney J., Mahowald N., Prank M., et al., Constraining the atmospheric limb of the plastic cycle. 498 Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,





- Can-Guven E., Microplastics as emerging atmospheric pollutants: a review and bibliometric analysis.
   Air Qual. Atmos. Health, 2021, 14, 203-215.
- 501 Chandra S., Chakraborty P., Air-water exchange and risk assessment of phthalic acid esters during the 502 early phase of COVID-19 pandemic in tropical riverine catchments of India. Chemosphere, 503 2023, 341, 140013-140013.
- 504 Chen H., Chen Y.H., Xu Y.B., et al., Different functional areas and human activities significantly affect 505 the occurrence and characteristics of microplastics in soils of the Xi'an metropolitan area. Sci. 506 Total Environ., 2022, 852, 8.
- 507 Chen N.-T., Yeh C.-L., Jung C.-C., Influence of agricultural activity in corn farming on airborne 508 microplastic in surrounding elementary school. Sci. Total Environ., 2024, 948,
- Chirizzi D., Cesari D., Guascito M.R., et al., Influence of Saharan dust outbreaks and carbon content on
   oxidative potential of water-soluble fractions of PM<sub>2.5</sub> and PM<sub>10</sub>.
   Atmospheric Environment, 2017, 163, 1-8.
- Demir A.P.T., Ulutan S., Migration of phthalate and non-phthalate plasticizers out of plasticized PVC films into air. Journal of Applied Polymer Science, 2013, 128, 1948-1961.
- Evangeliou N., Grythe H., Klimont Z., et al., Atmospheric transport is a major pathway of microplastics to remote regions. Nat. Commun., 2020, 11,
- Feng S., Gao D., Liao F., et al., The health effects of ambient PM<sub>2.5</sub> and potential mechanisms. Ecotox. Environ. Safe., 2016, 128, 67-74.
- García-Prieto A., Lunar M.L., Rubio S., et al., Determination of urinary bisphenol A by coacervative
   microextraction and liquid chromatography-fluorescence detection. Anal. Chim. Acta, 2008,
   630, 19-27.
- Gasperi J., Wright S.L., Dris R., et al., Microplastics in air: Are we breathing it in? Current Opinion in Environmental Science & Health, 2018, 1, 1-5.
- Ghanem M., Perdrix E., Alleman L.Y., et al., Phosphate Buffer Solubility and Oxidative Potential of
   Single Metals or Multielement Particles of Welding Fumes. Atmosphere, 2021, 12, 23.
- Ho S.S.H., Li L.J., Qu L.L., et al., Seasonal behavior of water-soluble organic nitrogen in fine particulate
   matter (PM<sub>2.5</sub>) at urban coastal environments in Hong Kong. Air Qual. Atmos.
   Health, 2019, 12, 389-399.
- Huang L., Zhu X.Z., Zhou S.X., et al., Phthalic Acid Esters: Natural Sources and Biological Activities.
   Toxins, 2021, 13, 17.
- Jiang H.H., Ahmed C.M.S., Canchola A., et al., Use of Dithiothreitol Assay to Evaluate the Oxidative
   Potential of Atmospheric Aerosols. Atmosphere, 2019, 10, 21.
- Jin T.Y., Tang J.C., Lyu H.H., et al., Activities of Microplastics (MPs) in Agricultural Soil: A Review of
   MPs Pollution from the Perspective of Agricultural Ecosystems. J. Agric. Food Chem., 2022,
   70, 4182-4201.
- Klein M., Bechtel B., Brecht T., et al., Spatial distribution of atmospheric microplastics in bulk deposition of urban and rural environments A one-year follow-up study in northern Germany.
   Sci. Total Environ., 2023, 901, 11.
- Kole P.J., Lohr A.J., Van Belleghem F.G.A.J., et al., Wear and Tear of Tyres: A Stealthy Source of
   Microplastics in the Environment. International Journal of Environmental Research and Public
   Health, 2017, 14,





- Liao Z., Ji X., Ma Y., et al., Airborne microplastics in indoor and outdoor environments of a coastal city
   in Eastern China. J. Hazard. Mater., 2021, 417,
- Lithner D., Larsson Å., Dave G., Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ., 2011, 409, 3309-3324.
- Liu K., Wang X., Fang T., et al., Source and potential risk assessment of suspended atmospheric
   microplastics in Shanghai. Sci. Total Environ., 2019, 675, 462-471.
- Liu M.X., Xu H.M., Feng R., et al., Chemical composition and potential health risks of tire and road
   wear microplastics from light-duty vehicles in an urban tunnel in China. Environmental
   Pollution, 2023, 330, 9.
- Lu L., Zhang R., Wang K., et al., Occurrence, influencing factors and sources of atmospheric
   microplastics in peri-urban farmland ecosystems of Beijing, China. Sci. Total Environ., 2024,
   912,
- Luo D., Wang Z., Liao Z., et al., Airborne microplastics in urban, rural and wildland environments on the Tibetan Plateau. J. Hazard. Mater., 2024a, 465,
- Luo L., Guo S., Shen D., et al., Characteristics and release potential of microplastics in municipal solid
   waste incineration bottom ash. Chemosphere, 2024b, 364, 143163.
- Luo Y., Gibson C.T., Chuah C., et al., Fire releases micro- and nanoplastics: Raman imaging on burned
   disposable gloves. Environmental Pollution, 2022, 312,
- Luo Y., Yang X.T., Wang D.W., et al., Insights the dominant contribution of biomass burning to methanol soluble PM<sub>2.5</sub> bounded oxidation potential based on multilayer perceptron neural
   network analysis in Xi'an, China. Sci. Total Environ., 2024c, 908, 8.
- Luo Y., Zeng Y.L., Xu H.M., et al., Connecting oxidative potential with organic carbon molecule
   composition and source-specific apportionment in PM2.5 in Xi'an, China. Atmospheric
   Environment, 2023, 306, 9.
- Ma B.B., Wang L.J., Tao W.D., et al., Phthalate esters in atmospheric PM2.5 and PM10 in the semi-arid
   city of Xi'an, Northwest China: Pollution characteristics, sources, health risks, and relationships
   with meteorological factors. Chemosphere, 2020, 242, 10.
- Nunez A., Vallecillos L., Maria Marce R., et al., Occurrence and risk assessment of benzothiazole, benzotriazole and benzenesulfonamide derivatives in airborne particulate matter from an industrial area in Spain. Sci. Total Environ., 2020, 708,
- Panko J.M., Chu J., Kreider M.L., et al., Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States. Atmospheric Environment, 2013, 72, 192-199.
- Pant P., Baker S.J., Shukla A., et al., The PM<sub>10</sub> fraction of road dust in the UK and India: Characterization, source profiles and oxidative potential. Sci. Total Environ., 2015, 530, 445-452.
- Pathak G., Nichter M., Hardon A., et al., The Open Burning of Plastic Wastes is an Urgent Global Health Issue. Annals of Global Health, 2024, 90,
- Peeken I., Primpke S., Beyer B., et al., Arctic sea ice is an important temporal sink and means of transport
   for microplastic. Nat. Commun., 2018, 9, 12.
- Qi R., Tang Y., Jones D.L., et al., Occurrence and characteristics of microplastics in soils from greenhouse
   and open-field cultivation using plastic mulch film. Sci. Total Environ., 2023, 905,





- 583 Shirmohammadi F., Wang D., Hasheminassab S., et al., Oxidative potential of on-road fine particulate 584 matter (PM<sub>2.5</sub>) measured on major freeways of Los Angeles, CA, and a 10-year
- comparison with earlier roadside studies. Atmospheric Environment, 2017, 148, 102-114.
- Simoneit B.R.T., Medeiros P.M., Didyk B.M., Combustion products of plastics as indicators for refuse burning in the atmosphere. Environ. Sci. Technol., 2005, 39, 6961-6970.
- Song Y.K., Hong S.H., Jang M., et al., Combined Effects of UV Exposure Duration and Mechanical
   Abrasion on Microplastic Fragmentation by Polymer Type. Environ. Sci. Technol., 2017, 51,
   4368-4376.
- Sun J., Ho S.S.H., Niu X.Y., et al., Explorations of tire and road wear microplastics in road dust
   PM<sub>2.5</sub> at eight megacities in China. Sci. Total Environ., 2022, 823, 8.
- 593 U.S.EPA. Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part
   594 A), Washington, DC, 1989.
- Velis C.A., Cook E., Mismanagement of Plastic Waste through Open Burning with Emphasis on the
   Global South: A Systematic Review of Risks to Occupational and Public Health. Environ. Sci.
   Technol., 2021, 55, 7186-7207.
- Waldschläger K., Lechthaler S., Stauch G., et al., The way of microplastic through the environment Application of the source-pathway-receptor model (review). Sci. Total Environ., 2020, 713, 20.
- Wang G.L., Lu J.J., Li W.J., et al., Seasonal variation and risk assessment of microplastics in surface water of the Manas River Basin, China. Ecotox. Environ. Safe., 2021a, 208, 9.
- Wang J., Ho S.S.H., Ma S., et al., Characterization of PM<sub>2.5</sub> in Guangzhou, China: uses of organic markers for supporting source apportionment. Sci. Total Environ., 2016, 550, 961-971.
- Wang K., Chen W., Tian J., et al., Accumulation of microplastics in greenhouse soil after long-term plastic film mulching in Beijing, China. Sci. Total Environ., 2022a, 828,
- Wang L.J., Pei W.L., Li J.C., et al., Microplastics induced apoptosis in macrophages by promoting ROS generation and altering metabolic profiles. Ecotox. Environ. Safe., 2024, 271, 11.
- Wang R., Dong S., Wang P., et al., Development and validation of an ultra performance liquid
   chromatography-tandem mass spectrometry method for twelve bisphenol compounds in animal
   feed. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life
   Sciences, 2021b, 1178,
- Wang R., Huang Y., Dong S., et al., The occurrence of bisphenol compounds in animal feed plastic packaging and migration into feed. Chemosphere, 2021c, 265,
- Wang Z.X., Xu H.M., Gu Y.X., et al., Chemical characterization of PM<sub>2.5</sub> in heavy polluted
   industrial zones in the Guanzhong Plain, northwest China: Determination of fingerprint source
   profiles. Sci. Total Environ., 2022b, 840, 9.
- Xu H., Bai Y., Peng Z., et al., Estimation of historical daily PM<sub>2.5</sub> concentrations for three
   Chinese megacities: Insight into the socioeconomic factors affecting PM<sub>2.5</sub>.
   Atmospheric Pollution Research, 2024, 15,
- Xu P., Peng G.Y., Su L., et al., Microplastic risk assessment in surface waters: A case study in the
   Changjiang Estuary, China. Marine Pollution Bulletin, 2018, 133, 647-654.
- Yadav I.C., Devi N.L., Zhong G., et al., Occurrence and fate of organophosphate ester flame retardants
   and plasticizers in indoor air and dust of Nepal: Implication for human exposure. Environmental
   Pollution, 2017, 229, 668-678.





| 625 | Yang J., Peng Z., Sun J., et al., A review on advancements in atmospheric microplastics research: The     |
|-----|-----------------------------------------------------------------------------------------------------------|
| 626 | pivotal role of machine learning. The Science of the total environment, 2024, 945, 173966                 |
| 627 | 173966.                                                                                                   |
| 628 | Yang Z., Lu F., Zhang H., et al., Is incineration the terminator of plastics and microplastics? J. Hazard |
| 629 | Mater., 2021, 401,                                                                                        |
| 630 | Zeng LJ., Huang YH., Chen XT., et al., Prevalent phthalates in air-soil-vegetable systems of plastic      |
| 631 | greenhouses in a subtropical city and health risk assessments. Sci. Total Environ., 2020, 743,            |
| 632 | Zhang H., Yang R.F., Shi W.Y., et al., The association between bisphenol A exposure and oxidative         |
| 633 | damage in rats/mice: A systematic review and meta-analysis. Environmental Pollution, 2022                 |
| 634 | 292, 9.                                                                                                   |
| 635 | Zhang J., Zhang X., Wu L., et al., Occurrence of benzothiazole and its derivates in tire wear, road dust  |
| 636 | and roadside soil. Chemosphere, 2018, 201, 310-317.                                                       |
| 637 | Zhen Z., Yin Y., Chen K., et al., Phthalate esters in atmospheric PM <sub>2.5</sub> at Mount Tai, north   |
| 638 | China plain: Concentrations and sources in the background and urban area. Atmos. Environ.                 |
| 639 | 2019, 213, 505-514.                                                                                       |
| 640 | Zhou J.k., Long K., Peng J. Pre-Concentration of Trace Bisphenol A in Seawater by Microextraction         |
| 641 | Flask and Determination by High Performance Liquid Chromatography. 2011 5th International                 |
| 642 | Conference on Bioinformatics and Biomedical Engineering, 2011, pp. 1-4.                                   |
| 643 |                                                                                                           |